3.2 \(\int x \sin (a+b \log (c x^n)) \, dx\)

Optimal. Leaf size=57 \[ \frac {2 x^2 \sin \left (a+b \log \left (c x^n\right )\right )}{b^2 n^2+4}-\frac {b n x^2 \cos \left (a+b \log \left (c x^n\right )\right )}{b^2 n^2+4} \]

[Out]

-b*n*x^2*cos(a+b*ln(c*x^n))/(b^2*n^2+4)+2*x^2*sin(a+b*ln(c*x^n))/(b^2*n^2+4)

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 57, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, integrand size = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {4485} \[ \frac {2 x^2 \sin \left (a+b \log \left (c x^n\right )\right )}{b^2 n^2+4}-\frac {b n x^2 \cos \left (a+b \log \left (c x^n\right )\right )}{b^2 n^2+4} \]

Antiderivative was successfully verified.

[In]

Int[x*Sin[a + b*Log[c*x^n]],x]

[Out]

-((b*n*x^2*Cos[a + b*Log[c*x^n]])/(4 + b^2*n^2)) + (2*x^2*Sin[a + b*Log[c*x^n]])/(4 + b^2*n^2)

Rule 4485

Int[((e_.)*(x_))^(m_.)*Sin[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)], x_Symbol] :> Simp[((m + 1)*(e*x)^(m +
 1)*Sin[d*(a + b*Log[c*x^n])])/(b^2*d^2*e*n^2 + e*(m + 1)^2), x] - Simp[(b*d*n*(e*x)^(m + 1)*Cos[d*(a + b*Log[
c*x^n])])/(b^2*d^2*e*n^2 + e*(m + 1)^2), x] /; FreeQ[{a, b, c, d, e, m, n}, x] && NeQ[b^2*d^2*n^2 + (m + 1)^2,
 0]

Rubi steps

\begin {align*} \int x \sin \left (a+b \log \left (c x^n\right )\right ) \, dx &=-\frac {b n x^2 \cos \left (a+b \log \left (c x^n\right )\right )}{4+b^2 n^2}+\frac {2 x^2 \sin \left (a+b \log \left (c x^n\right )\right )}{4+b^2 n^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.07, size = 44, normalized size = 0.77 \[ -\frac {x^2 \left (b n \cos \left (a+b \log \left (c x^n\right )\right )-2 \sin \left (a+b \log \left (c x^n\right )\right )\right )}{b^2 n^2+4} \]

Antiderivative was successfully verified.

[In]

Integrate[x*Sin[a + b*Log[c*x^n]],x]

[Out]

-((x^2*(b*n*Cos[a + b*Log[c*x^n]] - 2*Sin[a + b*Log[c*x^n]]))/(4 + b^2*n^2))

________________________________________________________________________________________

fricas [A]  time = 0.84, size = 49, normalized size = 0.86 \[ -\frac {b n x^{2} \cos \left (b n \log \relax (x) + b \log \relax (c) + a\right ) - 2 \, x^{2} \sin \left (b n \log \relax (x) + b \log \relax (c) + a\right )}{b^{2} n^{2} + 4} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*sin(a+b*log(c*x^n)),x, algorithm="fricas")

[Out]

-(b*n*x^2*cos(b*n*log(x) + b*log(c) + a) - 2*x^2*sin(b*n*log(x) + b*log(c) + a))/(b^2*n^2 + 4)

________________________________________________________________________________________

giac [B]  time = 1.65, size = 923, normalized size = 16.19 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*sin(a+b*log(c*x^n)),x, algorithm="giac")

[Out]

-1/2*(b*n*x^2*e^(1/2*pi*b*n*sgn(x) - 1/2*pi*b*n + 1/2*pi*b*sgn(c) - 1/2*pi*b)*tan(1/2*b*n*log(abs(x)) + 1/2*b*
log(abs(c)))^2*tan(1/2*a)^2 + b*n*x^2*e^(-1/2*pi*b*n*sgn(x) + 1/2*pi*b*n - 1/2*pi*b*sgn(c) + 1/2*pi*b)*tan(1/2
*b*n*log(abs(x)) + 1/2*b*log(abs(c)))^2*tan(1/2*a)^2 - b*n*x^2*e^(1/2*pi*b*n*sgn(x) - 1/2*pi*b*n + 1/2*pi*b*sg
n(c) - 1/2*pi*b)*tan(1/2*b*n*log(abs(x)) + 1/2*b*log(abs(c)))^2 - b*n*x^2*e^(-1/2*pi*b*n*sgn(x) + 1/2*pi*b*n -
 1/2*pi*b*sgn(c) + 1/2*pi*b)*tan(1/2*b*n*log(abs(x)) + 1/2*b*log(abs(c)))^2 - 4*b*n*x^2*e^(1/2*pi*b*n*sgn(x) -
 1/2*pi*b*n + 1/2*pi*b*sgn(c) - 1/2*pi*b)*tan(1/2*b*n*log(abs(x)) + 1/2*b*log(abs(c)))*tan(1/2*a) - 4*b*n*x^2*
e^(-1/2*pi*b*n*sgn(x) + 1/2*pi*b*n - 1/2*pi*b*sgn(c) + 1/2*pi*b)*tan(1/2*b*n*log(abs(x)) + 1/2*b*log(abs(c)))*
tan(1/2*a) - b*n*x^2*e^(1/2*pi*b*n*sgn(x) - 1/2*pi*b*n + 1/2*pi*b*sgn(c) - 1/2*pi*b)*tan(1/2*a)^2 - b*n*x^2*e^
(-1/2*pi*b*n*sgn(x) + 1/2*pi*b*n - 1/2*pi*b*sgn(c) + 1/2*pi*b)*tan(1/2*a)^2 + 4*x^2*e^(1/2*pi*b*n*sgn(x) - 1/2
*pi*b*n + 1/2*pi*b*sgn(c) - 1/2*pi*b)*tan(1/2*b*n*log(abs(x)) + 1/2*b*log(abs(c)))^2*tan(1/2*a) + 4*x^2*e^(-1/
2*pi*b*n*sgn(x) + 1/2*pi*b*n - 1/2*pi*b*sgn(c) + 1/2*pi*b)*tan(1/2*b*n*log(abs(x)) + 1/2*b*log(abs(c)))^2*tan(
1/2*a) + 4*x^2*e^(1/2*pi*b*n*sgn(x) - 1/2*pi*b*n + 1/2*pi*b*sgn(c) - 1/2*pi*b)*tan(1/2*b*n*log(abs(x)) + 1/2*b
*log(abs(c)))*tan(1/2*a)^2 + 4*x^2*e^(-1/2*pi*b*n*sgn(x) + 1/2*pi*b*n - 1/2*pi*b*sgn(c) + 1/2*pi*b)*tan(1/2*b*
n*log(abs(x)) + 1/2*b*log(abs(c)))*tan(1/2*a)^2 + b*n*x^2*e^(1/2*pi*b*n*sgn(x) - 1/2*pi*b*n + 1/2*pi*b*sgn(c)
- 1/2*pi*b) + b*n*x^2*e^(-1/2*pi*b*n*sgn(x) + 1/2*pi*b*n - 1/2*pi*b*sgn(c) + 1/2*pi*b) - 4*x^2*e^(1/2*pi*b*n*s
gn(x) - 1/2*pi*b*n + 1/2*pi*b*sgn(c) - 1/2*pi*b)*tan(1/2*b*n*log(abs(x)) + 1/2*b*log(abs(c))) - 4*x^2*e^(-1/2*
pi*b*n*sgn(x) + 1/2*pi*b*n - 1/2*pi*b*sgn(c) + 1/2*pi*b)*tan(1/2*b*n*log(abs(x)) + 1/2*b*log(abs(c))) - 4*x^2*
e^(1/2*pi*b*n*sgn(x) - 1/2*pi*b*n + 1/2*pi*b*sgn(c) - 1/2*pi*b)*tan(1/2*a) - 4*x^2*e^(-1/2*pi*b*n*sgn(x) + 1/2
*pi*b*n - 1/2*pi*b*sgn(c) + 1/2*pi*b)*tan(1/2*a))/(b^2*n^2*tan(1/2*b*n*log(abs(x)) + 1/2*b*log(abs(c)))^2*tan(
1/2*a)^2 + b^2*n^2*tan(1/2*b*n*log(abs(x)) + 1/2*b*log(abs(c)))^2 + b^2*n^2*tan(1/2*a)^2 + b^2*n^2 + 4*tan(1/2
*b*n*log(abs(x)) + 1/2*b*log(abs(c)))^2*tan(1/2*a)^2 + 4*tan(1/2*b*n*log(abs(x)) + 1/2*b*log(abs(c)))^2 + 4*ta
n(1/2*a)^2 + 4)

________________________________________________________________________________________

maple [F]  time = 0.03, size = 0, normalized size = 0.00 \[ \int x \sin \left (a +b \ln \left (c \,x^{n}\right )\right )\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*sin(a+b*ln(c*x^n)),x)

[Out]

int(x*sin(a+b*ln(c*x^n)),x)

________________________________________________________________________________________

maxima [B]  time = 0.36, size = 219, normalized size = 3.84 \[ -\frac {{\left ({\left (b \cos \left (2 \, b \log \relax (c)\right ) \cos \left (b \log \relax (c)\right ) + b \sin \left (2 \, b \log \relax (c)\right ) \sin \left (b \log \relax (c)\right ) + b \cos \left (b \log \relax (c)\right )\right )} n - 2 \, \cos \left (b \log \relax (c)\right ) \sin \left (2 \, b \log \relax (c)\right ) + 2 \, \cos \left (2 \, b \log \relax (c)\right ) \sin \left (b \log \relax (c)\right ) - 2 \, \sin \left (b \log \relax (c)\right )\right )} x^{2} \cos \left (b \log \left (x^{n}\right ) + a\right ) - {\left ({\left (b \cos \left (b \log \relax (c)\right ) \sin \left (2 \, b \log \relax (c)\right ) - b \cos \left (2 \, b \log \relax (c)\right ) \sin \left (b \log \relax (c)\right ) + b \sin \left (b \log \relax (c)\right )\right )} n + 2 \, \cos \left (2 \, b \log \relax (c)\right ) \cos \left (b \log \relax (c)\right ) + 2 \, \sin \left (2 \, b \log \relax (c)\right ) \sin \left (b \log \relax (c)\right ) + 2 \, \cos \left (b \log \relax (c)\right )\right )} x^{2} \sin \left (b \log \left (x^{n}\right ) + a\right )}{2 \, {\left ({\left (b^{2} \cos \left (b \log \relax (c)\right )^{2} + b^{2} \sin \left (b \log \relax (c)\right )^{2}\right )} n^{2} + 4 \, \cos \left (b \log \relax (c)\right )^{2} + 4 \, \sin \left (b \log \relax (c)\right )^{2}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*sin(a+b*log(c*x^n)),x, algorithm="maxima")

[Out]

-1/2*(((b*cos(2*b*log(c))*cos(b*log(c)) + b*sin(2*b*log(c))*sin(b*log(c)) + b*cos(b*log(c)))*n - 2*cos(b*log(c
))*sin(2*b*log(c)) + 2*cos(2*b*log(c))*sin(b*log(c)) - 2*sin(b*log(c)))*x^2*cos(b*log(x^n) + a) - ((b*cos(b*lo
g(c))*sin(2*b*log(c)) - b*cos(2*b*log(c))*sin(b*log(c)) + b*sin(b*log(c)))*n + 2*cos(2*b*log(c))*cos(b*log(c))
 + 2*sin(2*b*log(c))*sin(b*log(c)) + 2*cos(b*log(c)))*x^2*sin(b*log(x^n) + a))/((b^2*cos(b*log(c))^2 + b^2*sin
(b*log(c))^2)*n^2 + 4*cos(b*log(c))^2 + 4*sin(b*log(c))^2)

________________________________________________________________________________________

mupad [B]  time = 2.39, size = 44, normalized size = 0.77 \[ \frac {x^2\,\left (2\,\sin \left (a+b\,\ln \left (c\,x^n\right )\right )-b\,n\,\cos \left (a+b\,\ln \left (c\,x^n\right )\right )\right )}{b^2\,n^2+4} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*sin(a + b*log(c*x^n)),x)

[Out]

(x^2*(2*sin(a + b*log(c*x^n)) - b*n*cos(a + b*log(c*x^n))))/(b^2*n^2 + 4)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \begin {cases} \int x \sin {\left (a - \frac {2 i \log {\left (c x^{n} \right )}}{n} \right )}\, dx & \text {for}\: b = - \frac {2 i}{n} \\\int x \sin {\left (a + \frac {2 i \log {\left (c x^{n} \right )}}{n} \right )}\, dx & \text {for}\: b = \frac {2 i}{n} \\- \frac {b n x^{2} \cos {\left (a + b n \log {\relax (x )} + b \log {\relax (c )} \right )}}{b^{2} n^{2} + 4} + \frac {2 x^{2} \sin {\left (a + b n \log {\relax (x )} + b \log {\relax (c )} \right )}}{b^{2} n^{2} + 4} & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*sin(a+b*ln(c*x**n)),x)

[Out]

Piecewise((Integral(x*sin(a - 2*I*log(c*x**n)/n), x), Eq(b, -2*I/n)), (Integral(x*sin(a + 2*I*log(c*x**n)/n),
x), Eq(b, 2*I/n)), (-b*n*x**2*cos(a + b*n*log(x) + b*log(c))/(b**2*n**2 + 4) + 2*x**2*sin(a + b*n*log(x) + b*l
og(c))/(b**2*n**2 + 4), True))

________________________________________________________________________________________